3.1.84 \(\int \frac {a+b \text {sech}^{-1}(c x)}{(d+e x)^{3/2}} \, dx\) [84]

Optimal. Leaf size=105 \[ -\frac {2 \left (a+b \text {sech}^{-1}(c x)\right )}{e \sqrt {d+e x}}+\frac {4 b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {\frac {c (d+e x)}{c d+e}} \Pi \left (2;\text {ArcSin}\left (\frac {\sqrt {1-c x}}{\sqrt {2}}\right )|\frac {2 e}{c d+e}\right )}{e \sqrt {d+e x}} \]

[Out]

-2*(a+b*arcsech(c*x))/e/(e*x+d)^(1/2)+4*b*EllipticPi(1/2*(-c*x+1)^(1/2)*2^(1/2),2,2^(1/2)*(e/(c*d+e))^(1/2))*(
1/(c*x+1))^(1/2)*(c*x+1)^(1/2)*(c*(e*x+d)/(c*d+e))^(1/2)/e/(e*x+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.278, Rules used = {6423, 946, 174, 552, 551} \begin {gather*} \frac {4 b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \sqrt {\frac {c (d+e x)}{c d+e}} \Pi \left (2;\text {ArcSin}\left (\frac {\sqrt {1-c x}}{\sqrt {2}}\right )|\frac {2 e}{c d+e}\right )}{e \sqrt {d+e x}}-\frac {2 \left (a+b \text {sech}^{-1}(c x)\right )}{e \sqrt {d+e x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSech[c*x])/(d + e*x)^(3/2),x]

[Out]

(-2*(a + b*ArcSech[c*x]))/(e*Sqrt[d + e*x]) + (4*b*Sqrt[(1 + c*x)^(-1)]*Sqrt[1 + c*x]*Sqrt[(c*(d + e*x))/(c*d
+ e)]*EllipticPi[2, ArcSin[Sqrt[1 - c*x]/Sqrt[2]], (2*e)/(c*d + e)])/(e*Sqrt[d + e*x])

Rule 174

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + f*(x^2/d), x]]*Sqrt[Simp[(d
*g - c*h)/d + h*(x^2/d), x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && GtQ[(d*e - c
*f)/d, 0]

Rule 551

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1/(a*Sqr
t[c]*Sqrt[e]*Rt[-d/c, 2]))*EllipticPi[b*(c/(a*d)), ArcSin[Rt[-d/c, 2]*x], c*(f/(d*e))], x] /; FreeQ[{a, b, c,
d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-f/e, -d/c])

Rule 552

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 +
(d/c)*x^2]/Sqrt[c + d*x^2], Int[1/((a + b*x^2)*Sqrt[1 + (d/c)*x^2]*Sqrt[e + f*x^2]), x], x] /; FreeQ[{a, b, c,
 d, e, f}, x] &&  !GtQ[c, 0]

Rule 946

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[-c/
a, 2]}, Dist[1/Sqrt[a], Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[1 - q*x]*Sqrt[1 + q*x]), x], x]] /; FreeQ[{a, c, d
, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0] && GtQ[a, 0]

Rule 6423

Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((a +
b*ArcSech[c*x])/(e*(m + 1))), x] + Dist[b*(Sqrt[1 + c*x]/(e*(m + 1)))*Sqrt[1/(1 + c*x)], Int[(d + e*x)^(m + 1)
/(x*Sqrt[1 - c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {a+b \text {sech}^{-1}(c x)}{(d+e x)^{3/2}} \, dx &=-\frac {2 \left (a+b \text {sech}^{-1}(c x)\right )}{e \sqrt {d+e x}}-\frac {\left (2 b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \int \frac {1}{x \sqrt {d+e x} \sqrt {1-c^2 x^2}} \, dx}{e}\\ &=-\frac {2 \left (a+b \text {sech}^{-1}(c x)\right )}{e \sqrt {d+e x}}-\frac {\left (2 b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \int \frac {1}{x \sqrt {1-c x} \sqrt {1+c x} \sqrt {d+e x}} \, dx}{e}\\ &=-\frac {2 \left (a+b \text {sech}^{-1}(c x)\right )}{e \sqrt {d+e x}}+\frac {\left (4 b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \text {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \sqrt {2-x^2} \sqrt {d+\frac {e}{c}-\frac {e x^2}{c}}} \, dx,x,\sqrt {1-c x}\right )}{e}\\ &=-\frac {2 \left (a+b \text {sech}^{-1}(c x)\right )}{e \sqrt {d+e x}}+\frac {\left (4 b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {\frac {c (d+e x)}{c d+e}}\right ) \text {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \sqrt {2-x^2} \sqrt {1-\frac {e x^2}{c \left (d+\frac {e}{c}\right )}}} \, dx,x,\sqrt {1-c x}\right )}{e \sqrt {d+e x}}\\ &=-\frac {2 \left (a+b \text {sech}^{-1}(c x)\right )}{e \sqrt {d+e x}}+\frac {4 b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {\frac {c (d+e x)}{c d+e}} \Pi \left (2;\sin ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {2}}\right )|\frac {2 e}{c d+e}\right )}{e \sqrt {d+e x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 13.64, size = 1675, normalized size = 15.95 \begin {gather*} -\frac {2 a}{e \sqrt {d+e x}}-\frac {2 b \text {sech}^{-1}(c x)}{e \sqrt {d+e x}}+\frac {4 i b \left (2 \sqrt {-\frac {i \left (\sqrt {-c d-e} \sqrt {c d-e}+c d \sqrt {\frac {1-c x}{1+c x}}-e \sqrt {\frac {1-c x}{1+c x}}\right )}{\left (-i c d+\sqrt {-c d-e} \sqrt {c d-e}+i e\right ) \left (-i+\sqrt {\frac {1-c x}{1+c x}}\right )}} \sqrt {-\frac {i \left (\sqrt {-c d-e} \sqrt {c d-e}-c d \sqrt {\frac {1-c x}{1+c x}}+e \sqrt {\frac {1-c x}{1+c x}}\right )}{\left (i c d+\sqrt {-c d-e} \sqrt {c d-e}-i e\right ) \left (-i+\sqrt {\frac {1-c x}{1+c x}}\right )}} \left (1+\frac {1-c x}{1+c x}\right ) F\left (\text {ArcSin}\left (\sqrt {\frac {\left (\sqrt {-c d-e}-i \sqrt {c d-e}\right ) \left (i+\sqrt {\frac {1-c x}{1+c x}}\right )}{\left (\sqrt {-c d-e}+i \sqrt {c d-e}\right ) \left (-i+\sqrt {\frac {1-c x}{1+c x}}\right )}}\right )|\frac {\left (\sqrt {-c d-e}+i \sqrt {c d-e}\right )^2}{\left (\sqrt {-c d-e}-i \sqrt {c d-e}\right )^2}\right )+\sqrt {\frac {\left (\sqrt {-c d-e}-i \sqrt {c d-e}\right ) \left (i+\sqrt {\frac {1-c x}{1+c x}}\right )}{\left (\sqrt {-c d-e}+i \sqrt {c d-e}\right ) \left (-i+\sqrt {\frac {1-c x}{1+c x}}\right )}} \sqrt {1+\frac {1-c x}{1+c x}} \sqrt {\frac {e-\frac {e (1-c x)}{1+c x}+c d \left (1+\frac {1-c x}{1+c x}\right )}{c d+e}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {1-c x}{1+c x}}\right )|\frac {c d-e}{c d+e}\right )+2 i \sqrt {-\frac {i \left (\sqrt {-c d-e} \sqrt {c d-e}+c d \sqrt {\frac {1-c x}{1+c x}}-e \sqrt {\frac {1-c x}{1+c x}}\right )}{\left (-i c d+\sqrt {-c d-e} \sqrt {c d-e}+i e\right ) \left (-i+\sqrt {\frac {1-c x}{1+c x}}\right )}} \sqrt {-\frac {i \left (\sqrt {-c d-e} \sqrt {c d-e}-c d \sqrt {\frac {1-c x}{1+c x}}+e \sqrt {\frac {1-c x}{1+c x}}\right )}{\left (i c d+\sqrt {-c d-e} \sqrt {c d-e}-i e\right ) \left (-i+\sqrt {\frac {1-c x}{1+c x}}\right )}} \left (1+\frac {1-c x}{1+c x}\right ) \left (\Pi \left (\frac {i \sqrt {-c d-e}-\sqrt {c d-e}}{\sqrt {-c d-e}-i \sqrt {c d-e}};\text {ArcSin}\left (\sqrt {\frac {\left (\sqrt {-c d-e}-i \sqrt {c d-e}\right ) \left (i+\sqrt {\frac {1-c x}{1+c x}}\right )}{\left (\sqrt {-c d-e}+i \sqrt {c d-e}\right ) \left (-i+\sqrt {\frac {1-c x}{1+c x}}\right )}}\right )|\frac {\left (\sqrt {-c d-e}+i \sqrt {c d-e}\right )^2}{\left (\sqrt {-c d-e}-i \sqrt {c d-e}\right )^2}\right )-\Pi \left (\frac {-i \sqrt {-c d-e}+\sqrt {c d-e}}{\sqrt {-c d-e}-i \sqrt {c d-e}};\text {ArcSin}\left (\sqrt {\frac {\left (\sqrt {-c d-e}-i \sqrt {c d-e}\right ) \left (i+\sqrt {\frac {1-c x}{1+c x}}\right )}{\left (\sqrt {-c d-e}+i \sqrt {c d-e}\right ) \left (-i+\sqrt {\frac {1-c x}{1+c x}}\right )}}\right )|\frac {\left (\sqrt {-c d-e}+i \sqrt {c d-e}\right )^2}{\left (\sqrt {-c d-e}-i \sqrt {c d-e}\right )^2}\right )\right )\right )}{e \sqrt {\frac {\left (\sqrt {-c d-e}-i \sqrt {c d-e}\right ) \left (i+\sqrt {\frac {1-c x}{1+c x}}\right )}{\left (\sqrt {-c d-e}+i \sqrt {c d-e}\right ) \left (-i+\sqrt {\frac {1-c x}{1+c x}}\right )}} \left (1+\frac {1-c x}{1+c x}\right ) \sqrt {\frac {c d+e+\frac {c d (1-c x)}{1+c x}-\frac {e (1-c x)}{1+c x}}{c+\frac {c (1-c x)}{1+c x}}}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcSech[c*x])/(d + e*x)^(3/2),x]

[Out]

(-2*a)/(e*Sqrt[d + e*x]) - (2*b*ArcSech[c*x])/(e*Sqrt[d + e*x]) + ((4*I)*b*(2*Sqrt[((-I)*(Sqrt[-(c*d) - e]*Sqr
t[c*d - e] + c*d*Sqrt[(1 - c*x)/(1 + c*x)] - e*Sqrt[(1 - c*x)/(1 + c*x)]))/(((-I)*c*d + Sqrt[-(c*d) - e]*Sqrt[
c*d - e] + I*e)*(-I + Sqrt[(1 - c*x)/(1 + c*x)]))]*Sqrt[((-I)*(Sqrt[-(c*d) - e]*Sqrt[c*d - e] - c*d*Sqrt[(1 -
c*x)/(1 + c*x)] + e*Sqrt[(1 - c*x)/(1 + c*x)]))/((I*c*d + Sqrt[-(c*d) - e]*Sqrt[c*d - e] - I*e)*(-I + Sqrt[(1
- c*x)/(1 + c*x)]))]*(1 + (1 - c*x)/(1 + c*x))*EllipticF[ArcSin[Sqrt[((Sqrt[-(c*d) - e] - I*Sqrt[c*d - e])*(I
+ Sqrt[(1 - c*x)/(1 + c*x)]))/((Sqrt[-(c*d) - e] + I*Sqrt[c*d - e])*(-I + Sqrt[(1 - c*x)/(1 + c*x)]))]], (Sqrt
[-(c*d) - e] + I*Sqrt[c*d - e])^2/(Sqrt[-(c*d) - e] - I*Sqrt[c*d - e])^2] + Sqrt[((Sqrt[-(c*d) - e] - I*Sqrt[c
*d - e])*(I + Sqrt[(1 - c*x)/(1 + c*x)]))/((Sqrt[-(c*d) - e] + I*Sqrt[c*d - e])*(-I + Sqrt[(1 - c*x)/(1 + c*x)
]))]*Sqrt[1 + (1 - c*x)/(1 + c*x)]*Sqrt[(e - (e*(1 - c*x))/(1 + c*x) + c*d*(1 + (1 - c*x)/(1 + c*x)))/(c*d + e
)]*EllipticF[I*ArcSinh[Sqrt[(1 - c*x)/(1 + c*x)]], (c*d - e)/(c*d + e)] + (2*I)*Sqrt[((-I)*(Sqrt[-(c*d) - e]*S
qrt[c*d - e] + c*d*Sqrt[(1 - c*x)/(1 + c*x)] - e*Sqrt[(1 - c*x)/(1 + c*x)]))/(((-I)*c*d + Sqrt[-(c*d) - e]*Sqr
t[c*d - e] + I*e)*(-I + Sqrt[(1 - c*x)/(1 + c*x)]))]*Sqrt[((-I)*(Sqrt[-(c*d) - e]*Sqrt[c*d - e] - c*d*Sqrt[(1
- c*x)/(1 + c*x)] + e*Sqrt[(1 - c*x)/(1 + c*x)]))/((I*c*d + Sqrt[-(c*d) - e]*Sqrt[c*d - e] - I*e)*(-I + Sqrt[(
1 - c*x)/(1 + c*x)]))]*(1 + (1 - c*x)/(1 + c*x))*(EllipticPi[(I*Sqrt[-(c*d) - e] - Sqrt[c*d - e])/(Sqrt[-(c*d)
 - e] - I*Sqrt[c*d - e]), ArcSin[Sqrt[((Sqrt[-(c*d) - e] - I*Sqrt[c*d - e])*(I + Sqrt[(1 - c*x)/(1 + c*x)]))/(
(Sqrt[-(c*d) - e] + I*Sqrt[c*d - e])*(-I + Sqrt[(1 - c*x)/(1 + c*x)]))]], (Sqrt[-(c*d) - e] + I*Sqrt[c*d - e])
^2/(Sqrt[-(c*d) - e] - I*Sqrt[c*d - e])^2] - EllipticPi[((-I)*Sqrt[-(c*d) - e] + Sqrt[c*d - e])/(Sqrt[-(c*d) -
 e] - I*Sqrt[c*d - e]), ArcSin[Sqrt[((Sqrt[-(c*d) - e] - I*Sqrt[c*d - e])*(I + Sqrt[(1 - c*x)/(1 + c*x)]))/((S
qrt[-(c*d) - e] + I*Sqrt[c*d - e])*(-I + Sqrt[(1 - c*x)/(1 + c*x)]))]], (Sqrt[-(c*d) - e] + I*Sqrt[c*d - e])^2
/(Sqrt[-(c*d) - e] - I*Sqrt[c*d - e])^2])))/(e*Sqrt[((Sqrt[-(c*d) - e] - I*Sqrt[c*d - e])*(I + Sqrt[(1 - c*x)/
(1 + c*x)]))/((Sqrt[-(c*d) - e] + I*Sqrt[c*d - e])*(-I + Sqrt[(1 - c*x)/(1 + c*x)]))]*(1 + (1 - c*x)/(1 + c*x)
)*Sqrt[(c*d + e + (c*d*(1 - c*x))/(1 + c*x) - (e*(1 - c*x))/(1 + c*x))/(c + (c*(1 - c*x))/(1 + c*x))])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(250\) vs. \(2(96)=192\).
time = 0.42, size = 251, normalized size = 2.39

method result size
derivativedivides \(\frac {-\frac {2 a}{\sqrt {e x +d}}+2 b \left (-\frac {\mathrm {arcsech}\left (c x \right )}{\sqrt {e x +d}}-\frac {2 c \,e^{2} \sqrt {\frac {-c \left (e x +d \right )+c d +e}{c e x}}\, x \sqrt {-\frac {-c \left (e x +d \right )+c d -e}{c e x}}\, \EllipticPi \left (\sqrt {e x +d}\, \sqrt {\frac {c}{c d +e}}, \frac {c d +e}{c d}, \frac {\sqrt {\frac {c}{c d -e}}}{\sqrt {\frac {c}{c d +e}}}\right ) \sqrt {\frac {-c \left (e x +d \right )+c d -e}{c d -e}}\, \sqrt {\frac {-c \left (e x +d \right )+c d +e}{c d +e}}}{d \sqrt {\frac {c}{c d +e}}\, \left (c^{2} \left (e x +d \right )^{2}-2 c^{2} d \left (e x +d \right )+c^{2} d^{2}-e^{2}\right )}\right )}{e}\) \(251\)
default \(\frac {-\frac {2 a}{\sqrt {e x +d}}+2 b \left (-\frac {\mathrm {arcsech}\left (c x \right )}{\sqrt {e x +d}}-\frac {2 c \,e^{2} \sqrt {\frac {-c \left (e x +d \right )+c d +e}{c e x}}\, x \sqrt {-\frac {-c \left (e x +d \right )+c d -e}{c e x}}\, \EllipticPi \left (\sqrt {e x +d}\, \sqrt {\frac {c}{c d +e}}, \frac {c d +e}{c d}, \frac {\sqrt {\frac {c}{c d -e}}}{\sqrt {\frac {c}{c d +e}}}\right ) \sqrt {\frac {-c \left (e x +d \right )+c d -e}{c d -e}}\, \sqrt {\frac {-c \left (e x +d \right )+c d +e}{c d +e}}}{d \sqrt {\frac {c}{c d +e}}\, \left (c^{2} \left (e x +d \right )^{2}-2 c^{2} d \left (e x +d \right )+c^{2} d^{2}-e^{2}\right )}\right )}{e}\) \(251\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsech(c*x))/(e*x+d)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/e*(-a/(e*x+d)^(1/2)+b*(-1/(e*x+d)^(1/2)*arcsech(c*x)-2*c*e^2*((-c*(e*x+d)+c*d+e)/c/e/x)^(1/2)*x*(-(-c*(e*x+d
)+c*d-e)/c/e/x)^(1/2)*EllipticPi((e*x+d)^(1/2)*(c/(c*d+e))^(1/2),1/c*(c*d+e)/d,(c/(c*d-e))^(1/2)/(c/(c*d+e))^(
1/2))*((-c*(e*x+d)+c*d-e)/(c*d-e))^(1/2)*((-c*(e*x+d)+c*d+e)/(c*d+e))^(1/2)/d/(c/(c*d+e))^(1/2)/(c^2*(e*x+d)^2
-2*c^2*d*(e*x+d)+c^2*d^2-e^2)))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsech(c*x))/(e*x+d)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(%e-c*d>0)', see `assume?` for
more details

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsech(c*x))/(e*x+d)^(3/2),x, algorithm="fricas")

[Out]

integral((b*arcsech(c*x) + a)*sqrt(x*e + d)/(x^2*e^2 + 2*d*x*e + d^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a + b \operatorname {asech}{\left (c x \right )}}{\left (d + e x\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asech(c*x))/(e*x+d)**(3/2),x)

[Out]

Integral((a + b*asech(c*x))/(d + e*x)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsech(c*x))/(e*x+d)^(3/2),x, algorithm="giac")

[Out]

integrate((b*arcsech(c*x) + a)/(e*x + d)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {a+b\,\mathrm {acosh}\left (\frac {1}{c\,x}\right )}{{\left (d+e\,x\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*acosh(1/(c*x)))/(d + e*x)^(3/2),x)

[Out]

int((a + b*acosh(1/(c*x)))/(d + e*x)^(3/2), x)

________________________________________________________________________________________